
International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

Real Time Computing Systems 
 

Niharika Anand Sharma,  Manu Bansal 
     
 
ABSTRACT: The real time computing systems  respond to input immediately therefore there  are strict timing constraints that have to be met to get the 
correct output. Real time applications are expected to generate output in response to stimuli within some upper bound. Real t ime systems change its 
state in real time even after the controlling processor has stopped its execution. The real time application respond to the stimuli within a particular 

deadline. Scheduling is deciding how use the processor’s time on the computer and to provide efficient service to all users i t is an arrangement of 
performing functions at specified time. The intervals between each function have been defined by the algorithm to avoid any overlapping. The scheduling 
techniques has been used in order to achieve optimized results in real time. In the paper we analyze various scheduling techniques and observes the 

various issues on which there is still a need to work.  
 
Key Words: Scheduling, resources, power, real time operations 

 

——————————      —————————— 
 

 
 

 

1  INTRODUCTION: 
CHEDULING, in computing, means how the 

processes can be assigned on the available CPU(s). It 

is a key concept of multitasking, multiprocessing and 

real-time operating system design [1,3-4]. It is done by 

a means of scheduler and dispatcher. A scheduler is a 

person or machine that organizes or maintains 

schedules. In computing, scheduler is software 

program that arranges jobs or computer’s operations in 

an appropriate order. A dispatcher is a module which 

gives control of CPU to the process selected by the 

scheduler. It is a decision making process that deals 

with the allocation of common resources to various 

tasks at different time periods to achieve multiple 

objectives. The resources and tasks can be of different 

forms in homogeneous/heterogeneous organization. 

Priorities have been associated with the tasks; each task 

has its due date and earliest dead line. Similarly 

objectives can also be in the different forms, they can be 

minimization of completion time of last task or 

minimization of number of tasks completed after their 

respective due dates [2,8-9]. In an industry it may mean 

to assign appropriate workers to do some task each 

day. It enables us to perform tasks which are done in 

routine automatically and efficiently.  
 

 

 

LITERATURE SURVEY: 
The following sections show the work done by the 

various researchers in the field of scheduling for real 

time processors. 

 

In 2003 Sanjoy K. Baruah et. al. [18] presented a 

schedulabiity analysis of Rate Monotonic (RM) 

scheduling algorithm to determine schedulabiity of 

periodic task set on a particular uniform 

multiprocessor. They considered periodic model of 

hard real time tasks with two parameters namely 

execution parameter (Ci) and period (Ti). They have 

provided the conditions of feasibility of the task system 

on a uniform multiprocessor platform. Also they 

proved that all the deadlines will be met if task set is 

scheduled using Rate Monotonic (RM) algorithm. 

 

In 2008 Euiseong Seo et. al. [16] presented an energy 

efficient technique for scheduling real time tasks on 

multicore processors to lower the power consumption 

and increasing the throughput. They presented two 

techniques which modify existing techniques of 

unicore processors for multicore processors. The two 

techniques suggested by them are: (i) Dynamic 

Repartitioning algorithm, which dynamically balances 

the task loads multiple cores to minimize the power 

consumption during execution. (ii) Dynamic core 

scaling algorithm, which reduces leakage power 

consumption by adjusting the number of active cores. 

The simulation results show that 25% of energy 

consumed can be conserved by dynamic repartitioning 

and 40 % is conserved by dynamic core scaling. 

 

S 

———————————————— 

Niharika Anand Sharma: Sr.Lecturer,Department of Electronics and 

Communication Engineering,MIET,Meerut,E-mail: 

niharikaanand84@gmail.com 

Manu Bansal:Asst.Professor, Department of Electronics and Communication 

Engineering,Thapar University,Patiala 

http://www.webopedia.com/TERM/I/input.html


International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

In 2008 Ming Xiong et. al. [17] suggested deferrable 

scheduling algorithm for maintaining real time data 

freshness for minimizing the update workload by 

maintaining the temporal validity of real time data. The 

update transaction follows aperiodic task model and 

sampling times of update transaction jobs were 

deferred as late as possible. 

 

In 2009, Fengxiang Zhang et. al. [15] presented 

schedulability analysis for real time systems with EDF 

scheduling which reduces the number of calculations 

of the processor demand of every task set and thus 

reduces the calculation times for the schedulable as 

well as unschedulable task sets. Experimental results 

show that 96% of task sets complete each schedulability 

test in less than 30 calculations of processor demand 

function (h(t)). 

 

In 2010 Wann-Yun Shieh et. al. [12] suggested energy 

efficient tasks scheduling algorithm for the dual core 

real time systems to satisfy the low power consumption 

demands. Their main aim was to minimize the power 

consumption at the same time they maintain the same 

performance level of the dual core processor. They 

include two online and offline attacks and proposed an 

Integer linear programming approach for the optimal 

scheduling. The experimental results shown in their 

work was evident that the energy consumption was 

could be about 38% effectively by using heuristic 

algorithm. 

 

In 2010 Marko Bertogna et. al. [13] suggested limited 

pre-emption earliest deadline first scheduling of 

sporadic task systems. Their algorithm is based on the 

amount of pre-emption. With no pre-emption there 

will be significant scheduling overhead and as each 

pre-emption leads to context switching, it causes 

increase in runtime overhead. In their paper, they 

suggested a limited pre-emption technique which can 

schedule all the systems that can be scheduled by fully 

preemptive algorithm but with limited runtime 

overhead. It is provided with a non pre-emption 

function, Q, which is monotonically non-increasing. It 

takes time to the deadline of executing job as input and 

gives us the time for which such job could be executed 

non pre-emptively. They performed large number of 

simulations by varying number of tasks, n, total 

utilization, U, and task parameters. For n=10 the 

average number of pre-emptions has been reduced by 

20% as compared to normal EDF.  

In 2010 Xian-Bo He et. al. [14] suggested an improved 

version of earlier deadline first (EDF) scheduling 

algorithm which was based on fuzzy inference system 

(FIS). Their algorithm was suitable for embedded real 

time systems in uncertain environments in order to 

minimize the deadline miss ratio. All the tasks were 

periodic and fuzzy set describes the task's criticality 

and deadline distance. The tasks which have higher 

criticality and shorter deadline distance have the 

higher priority and are scheduled first. The 

experimental results shown in their paper were evident 

that the total deadline miss ratio was reduced 

compared to traditional EDF. Important tasks in 

improved EDF never miss their deadlines when the 

system is not overloaded. 

 

In 2011 A. Burns et. al. [11] suggested partitioned EDF 

scheduling for multiprocessors using a new task 

splitting scheme. They have compared C=D splitting 

scheme with fully partitioned scheme. They suggested 

that for m processors there can be splitting of at most 

m-1 tasks. No special run time mechanisms were 

required and overheads were kept minimal. In fully 

partitioned systems, there is a problem of bin-packing 

due to overloading of processors. The suggested 

scheme was straightforward to implement without any 

unusual real time operating system functions. They 

considered that each processor used standard EDF 

policy and tasks have dynamic priorities. Evaluation of 

the technique showed that there was a remarkable 

increase in the performance. The average utilization 

factor of full processors with 8 tasks and with a total 

utilization of 4 had increased from less than 0.89 to 

0.99.  
 

3 MOTIVATION: 
Real time systems are the computing systems that must 

react within the precise time constraints to events in the 

environment. The efficient scheduling of tasks on these 

systems becomes necessary in order to receive accurate 

and timely response. From the work done by various 

researchers it has been observed that there is still a 

need to optimize scheduling techniques so that the 

various constraints of real time systems can be met and 

performance can be enhanced. 

4 Objective of this work: 
1. To study various algorithms used for 

scheduling processes on a processor. 

2. To study various techniques used for 

scheduling real time tasks. 



International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

3. Comparison of different Real Time scheduling 

algorithms. 

 
4.1 Objectives of Scheduling: 

There are some goals that must be achieved in order to 

perfectly schedule the task on the processor. Some of 

those objectives are mentioned below. 
 

4.1.1 Fairness: 

It is important goal to achieve under all circumstances. 

A scheduler guarantees that each process should get a 

fair amount of CPU time for its execution and there 

should be no condition of starvation. But giving equal 

or equivalent time to all the processes is also not fair as 

different processes are not equally critical. 
 

4.1.2 Throughput: 

It is the amount of work a computer can do in a period 

of time. The scheduler aims to maximize the number of 

jobs completed or processed per unit time. 
 

4.1.3 Turnaround Time: 

It is the amount of time taken for the process to get 

executed. It is the interval from the time of submission 

of a process to the time of completion of the process. 

Turnaround time, Tr = Ts + Tw 

Ts = Execution Time, Tw = Waiting time 

The scheduler should minimize the turnaround time, 

but it is not upto the scheduler to affect the execution 

time but it can minimize the waiting time so as to 

reduce the turnaround time [3,8].  
 

4.1.4 Waiting Time: 

Similar processes are allocated equal CPU time or times 

are divided according to processes’ priority. The time 

every process waits for its execution in the ready queue 

is known as waiting time and it is the duty of scheduler 

to minimize this time [3]. 
 

4.1.5 Efficiency 

It signifies the amount of time the system is performing 

tasks. Scheduler should keep the system busy for most 

of the time when possible. If both CPU and I/O devices 

are working all the time then more work gets done per 

unit time [5, 9]. Usually the above goals conflict with 

each other, as amount of the CPU time is finite, so there 

is a need of trade-off between the achievable goals. 

Every scheduling technique aim to achieve either of 

above mentioned goals. For scheduling tasks on a 

processing unit, there can be an optimization for power 

along with clock period. There are various techniques 

devised to optimize power and processing speed. 

 
5 TYPES OF OPERATING SYSTEM 
SCHEDULING 
Basic operating systems schedulers can be of three 

distinct types. Scheduling types are divided according 

to the schedulers and the names of schedulers suggest 

the relative frequency with which these functions are 

performed [3,6]. The schedulers are: 
 

5.1 Long-term or high-level scheduling: 

It decides which processes are to be added to the set 

currently executing processes and which are to be 

exited. It controls the degree of multiprogramming in 

multitasking systems with a need of trade off between 

degree of multiprogramming and throughput. The 

higher the number of processes, the smaller the time 

each of the processes may control CPU for. Long-term 

scheduler is also known as Admission Scheduler [7]. It 

is required to ensure that real time processes get 

enough CPU time to complete their tasks. The long 

term queue exists in the hard disk or virtual memory. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

 
 
5.2 Midterm scheduling: 

The scheduling of processes is mainly done based on 

the requirement of the resources. It is essentially 

concerned with memory management and often 

designed as a memory management subsystem of an 

operating system. It temporarily removes a process 

from the main memory which is of low priority or has 

been inactive for a long time. This is known as 

"swamping out" of a process. The scheduler may 

decide to swamp out the process which is page-faulting 

frequently or a process which is taking large amount of 

memory. Its efficient interaction with the short term 

.

 
          Figure 1: Long term scheduling policies 

 



International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

scheduler is very essential for the performance of the 

systems with virtual memory. 
 

5.3 Short term scheduling/CPU Scheduler: 

It is concerned with the allocation of CPU time to meet 

the processes in order to meet some pre-defined 

objectives. It decides which of the in-memory process is 

executed following an interrupt or operating system 

call. This scheduler makes more frequent scheduling 

decisions than long-term and mid-term schedulers [5, 

10] It can be preemptive or non-preemptive depending 

on the requirement. Mostly, it is written in assembler as 

it is a critical part of operating system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
6  SCHEDULING PROBLEMS: 
Consider we have m machines Mj(j=1,2,......m) and we 

have to process n jobs Ji(i=1,2,....n). Allocation of time 

intervals on machine is known as schedule and is 

represented by Gantt charts, which can be machine 

oriented or job oriented. [9] 

 

 

 

 

 

 

 

 
Figure 4 Job Oriented Gantt Chart [9]

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic notations used in scheduling: 

ni: it represents the number of operations which is 

consisted in Job Ji, represented by Oi1,Oi2,.....,Oi,ni 

pij: processing time requirement associated with 

operation Oij 

ri: represents when the first operation of job Ji is 

available for processing, known as release date. 

µij: represents the set of machines associated with each 

operation Oij. µij⊆{M1,M2,....,Mm}. any operation can be 

processed on any machine. di: due date or deadline(in 

case of real time operations), time by which Ji should be 

ideally completed. 

wi: weight, representing the relative importance of Ji. 

fi(t): non decreasing cost function, that measures the 

cost of completing Ji in time t. There are many classes of 

scheduling problems which are classified according to 

their complexity and specified in terms of classification 

which consists of three fields [10]. 
 

7 SCHEDULING ALGORITHMS: 
It is a method by which resources are allocated to the 

processes such as bandwidth, processor time etc. It is 

usually done to distribute workload across multiple 

computers or processing units so as to achieve optimal 

resource utilization, maximize throughput, minimize 

response time and avoid overload [4]. The goal of 

scheduling algorithm is to fulfil the following criterion. 

 

 

.  
 

 
Figure 2 Queuing Diagram for scheduling 

 

 

 

 
Figure 3 Machine oriented Gantt Chart

 
[9] 

 

 

 
                Figure 4 Job Oriented Gantt Chart [9] 



International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

i. No Starvation: 

This means that a particular process should not be held 

up indefinitely. There should be proper allocation of 

resources to every process so as to ensure that all 

processes get CPU time. 

 
ii. Preemption in case of priority based 

algorithms 

Scheduling algorithms have to ensure that there should 

be fairness in the preemption policy. It should make 

sure that high priority tasks should not hold low 

priority tasks indefinitely. 

 

7.1Categorization of scheduling algorithms 

Scheduling algorithms can be classified on the basis of 

the type of environment in which they are being used. 

This categorization is based on user's point of view. 

According to this, scheduling algorithms can be 

classified into three categories.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
7.2 First Come First Serve scheduling 
(FCFS): 

It is the simplest scheduling algorithm in which 

processes are dispatched according to their arrival time 

on the ready queue. It is a non pre-emptive technique, 

so when processes get the CPU time, they are executed 

to completion. It is fair in the human sense of fairness 

but unfair in the sense that long jobs make short jobs 

wait or important jobs might get held up because of 

unimportant jobs. As the process is executed until it 

gets completed, there is no condition of starvation as 

long as process completes its execution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No prioritization of processes is there. It cannot 

guarantee good response time, so this technique is 

inappropriate for interactive systems. It is rarely used 

in modern operating systems but it is usually 

embedded within other schemes. [5] 

 
7.3 Shortest Process Next: 

In this scheduling policy, scheduler schedules the 

processes with the least estimated processing time to be 

next in queue. This technique is also known as 

Shortest-Job-First or shortest next-CPU-burst first. CPU 

burst is the time processor is being used by process 

before it is no longer ready or how long a process 

requires CPU between I/O waits. This policy considers 

that we know the next CPU burst of all the ready 

processes. The estimation of the length of next CPU 

burst is based on the recent CPU bursts. This technique 

is non-preemptive but pre-emption can be included 

with this technique and the resulting technique is 

known as Shortest Remaining Time next. The problem 

with shortest job first algorithm is that it cannot handle 

infinite loops and delivers poor performance if the task 

with short CPU burst comes after the process with 

longer burst which has started execution. Another 

problem associated with this technique is starvation i.e. 

processes with long burst times are indefinitely 

postponed from getting on the processor. In most of the 

cases, this technique is designed to achieve maximum 

throughput as short processes get most of the CPU 

time. 

 

7.4 Scheduling Issues 

While performing scheduling, there are multiple 

constraints which are to be met for accurate scheduling. 

There are issues relating to different tasks the system 

performs. The requirement of the system decides the 

scheduling algorithm design. We have to consider the 

application profile of the system; the level of 

 

 
Figure 5 Categorization of scheduling algorithms 

 

 

 
Figure 6 Scheduling processes using First Come First 

Serve (FCFS) technique 

 

 



International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

scheduling required, the time at which a process is 

scheduled, the parameter to be optimized, the need of 

pre-emption etc. Some of the issues are classified 

below: 

 

1. Application Profile 

It specifies the type of applications to be run 

on the system. A program alternates between 

CPU utilization and I/O. While performing 

scheduling we need to consider the bound of 

the programs executed on the system. It can be 

either compute-bound or I/O bound. For the 

I/O bound operations scheduler decides which 

processes should be scheduled while the 

currently running task is performing some I/O 

operation. 

 

2. Scheduling level 

There can be only one process at a time which 

gets CPU time. So, the scheduler has to decide 

the process which is to be executed next. The 

decision is dependent on the choice of 

scheduling algorithm. Swapper is provided to 

decide about the processes which should 

reside in the memory. This type of scheduling 

is known as midterm scheduling. 
 

3. Time of schedule 

It is the duty of scheduler to decide about the 

time at which schedule is started. This is done 

by the help of scheduling algorithm. The 

response of the system on receiving an 

interrupt, on creation/termination of a process, 

etc is determined by the scheduler. When there 

is a system call, it is the scheduler which 

decides which processes are to be put in ready 

queue. 

 
4. Pre-emptive or Non pre-emptive 

The system can be interrupted during the 

execution of the process in case of arrival of a 

higher priority process. This type of system is 

known as pre-emptive system. If no 

interruption is there then the system is non 

pre-emptive system. 
 

8. Conclusion and Future Scope: 
The various objectives of my work have been met. 

Study of scheduling algorithms have been done and it 

has been observed that preemptive scheduling with 

dynamic priorities works very well in case of 

scheduling tasks on real time systems. From the 

comparison of real time scheduling algorithms, it is 

clear that earliest deadline first is the efficient 

scheduling algorithm if the CPU utilization is not more 

than 100%. For hard real time systems, calculations of 

probabilistic worst case execution time (WCET) 

analysis can be done. Implementation of scheduling 

algorithm on FPGA can be done for scheduling tasks 

with dynamic priorities and schedulability of the task 

can be checked. 
 

 
REFERENCES 
[1] Giorgio C. Buttazzo, "Hard Real Time Computing 

Systems: Predictable Scheduling Algorithms and 

Applications", Springer, Third edition. 

[2] Eric Brewer, "Lottery Scheduling", Advanced Topics in 

Computer Systems, 

www.cs.berkeley.edu/~brewer/cs262/Lec-scheduling.pdf 

[3] Franco Callari, "Types of Scheduling - Long Term and 

Medium Term Scheduling", 

http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-

notes/node38.html. 

[4] Howard Hamilton, Kimberly Lemieux, Allan Tease, 

"Scheduling of Processes", 

http://www2.cs.uregina.ca/~hamilton/courses/330/notes/s

cheduling/scheduling.html 

[5] "CPU Scheduling", http://www.os-

concepts.thiyagaraaj.com/cpu-process-scheduling. 

[6] Alan Burns and Sanjoy Baruah, "Sustainability in Real-

time Scheduling", Journal of Computing Science and 

Engineering, Vol. 2, No. 1, March 2008, Pages 74-97. 

[7] Daniel P. Bovet and Marco Cesati, "Understanding the 

Linux Kernel", O'Reilly Online Catalogue, October 2000. 

[8] Hermann Kopetz, "Real-Time Systems: Design Principles 

for Distributed Embedded Applications", Springer, 

second edition. 

[9] Peter Brucker, "Scheduling Algorithms", Springer, fifth 

edition. 

[10] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. 

Rinnooy Kan., "Optimization and approximation in 

deterministic sequencing and scheduling: A survey", 

Annals of Discrete Mathematics, 5:287–326, 1979. 

[11] A. Burns, R.I. Davis, P. Wang, and F. Zhang " Partitioned 

EDF scheduling for multiprocessors using a C = D task 

splitting scheme", Real Time Systems, DOI: 

10.1007/s11241-011-9126-9, Springer Science+Business 

Media, LLC 2011 

[12] Wann-Yun Shieh, Bo-Wei Chen "Energy-Efficient Tasks 

scheduling Algorithm for Dual-core Real-time Systems", 

International Computer Symposium, December 2010, 

pp.568-575. 

[13] Marko Bertogna and Sanjoy Baruah, "Limited Preemption 

EDF Scheduling of Sporadic Task Systems", IEEE 

Transactions on industrial informatics, vol. 6, no. 4, 

November 2010. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Bo-Wei%20Chen.QT.&newsearch=partialPref


International Journal of Scientific & Engineering Research (IJSER) Volume 3, Issue 6, June 2012  

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

 

[14] Xian-Bo He, Gang-Yuan Zhang, Min Liu, Yu-Ping Zhao, 

Wei Li "A Fuzzy EDF Scheduling Algorithm Being 

Suitable for embedded Soft Real-time Systems in the 

Uncertain Environments", Advanced Computer Control 

(ICACC), 2nd International Conference, vol. 5, March 

2010, pp. 583-587  

[15] Fengxiang Zhang and Alan Burns, "Schedulability 

Analysis for Real-Time Systems with EDF Scheduling", 

IEEE transactions on computers, vol. 58, no. 9, September 

2009, pp. 1250-1258 

[16] Euiseong Seo Jinkyu Jeong, Seonyeong Park, and 

Joonwon Lee., "Energy Efficient Scheduling of Real-Time 

Tasks on Multicore Processors", IEEE transactions on 

parallel and distributed systems, vol. 19, no. 11, 

November 2008, pp 1540-1552. 

[17] Ming Xiong, Song Han, Kam-Yiu Lam and Deji Chen, 

"Deferrable Scheduling for Maintaining Real-Time Data 

Freshness: Algorithms, Analysis, and Results", IEEE 

transactions on computers, vol. 57, no. 7, July 2008, pp. 

952-964. 

[18] Sanjoy K. Baruah, and Joel Goossens, "Rate-Monotonic 

Scheduling on Uniform Multiprocessors", IEEE 

Transactions on Computers, Vol. 52, No. 7, July 2003, pp. 

966-970. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Gang-Yuan%20Zhang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Min%20Liu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Yu-Ping%20Zhao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Wei%20Li.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5481671
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5481671
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5481671

